
www.manaraa.com

A Semantic Database Management System: SIM

by

Saurabh Boyed
 (boyed@cs.utexas.edu)

Advisor: Professor Philip Cannata
(cannata@cs.utexas.edu)

COMPUTER SCIENCES HONORS THESIS
CS 379H

Spring 2003

Department of Computer Science
The University of Texas at Austin

www.manaraa.com

 2

Abstract
SIM is a database management system based on the semantic data model. The goal of this research
project was the design and implementation of SIM. SIM, an abbreviation for Semantic Information
Manager, uses a data model that thrives in capturing the meaning of the data more than other
database models. Thus, this higher-level database model enables the database designer and the users
to see a conceptual view of the database. This paper presents an overview of some of the benefits of
the semantic data model and emphasizes how SIM incorporates the semantic data model. We
describe how SIM overcomes some of the weaknesses of the other database modeling systems.
Several SIM and SQL examples are also provided to illustrate this matter and serve as the basis for
comparative analysis. We also discuss some implementation considerations and software tools used
for design and implementation of SIM. Finally, we propose some hitherto unapplied uses and
applications of SIM that have the potential to streamline current database systems.

Keywords
SIM, Semantic Information Manager, Semantic Data Model, Database Management, Semantic
Abstractions

www.manaraa.com

 3

1. Introduction
Over the last few decades a number of data models have been developed. Numerous database
management systems based on different data models have been made available for commercial use.
Intuitively, we can acknowledge that different data models have their own strengths and
shortcomings. The use of database management has also progressively evolved over the years
ranging from organizational bookkeeping to complex topics such as bioinformatics. Relatively
simple database models might be sufficient for organizational bookkeeping, but might fall short for
applications that require complex relationships and rich constructs. We believe the semantic database
model has significant advantages over some other database models for more complex data
manipulation needs. Such advantages motivated us to undertake the research project of designing
and implementing the Semantic Information Manager.

SIM was initially developed at Unisys Corporation during the eighties to run on Unisys A Series
machines. Lack of applicability of SIM in PC systems during that time led to business decisions to
not implement SIM for PCs. This decision made SIM inaccessible to the majority of computer users
so we embarked on the development of the SIM database management system for PC users. We have
successfully implemented the fundamental features of SIM for PC systems that can demonstrate the
novel features of SIM. Although the current version falls short of becoming commercially viable due
to the lack of resources and time, it would be very useful for further research in the database
community and academia.

This paper proceeds as follows. In section 2 we describe the problems associated with some of the
current database models in detail. Section 3 describes the Semantic Data Model and how it
overcomes the problems. This section also illustrates how SIM builds on the Semantic Data Model.
Section 4 discusses the Object Definition Language (ODL) for SIM, while section 5 discusses the
Object Manipulation Language (OML) for SIM. Next, in section 6 we use a simple University
schema to demonstrate some queries in SIM. Section 7 uses sample queries to compare SIM with
SQL. Subsequently, in section 8, we discuss some of the implementation considerations and
software tools used for the implementation of SIM. Finally, we present future work on SIM and
conclusions. The University schema code is provided in Appendix A for reference.

2. The Problem
Different database models have different aspects to them. The relational model is unarguably the
most widely used database model today. Nevertheless, it is weak in capturing the semantics of a
database. Thus, in the relational model, the semantics have to be separately described making it
difficult to manage and use [2]. As in relational modeling languages like SQL, database designers
have to convert the real-world structures of the data to low level language constructs requiring an
extra level of indirection. Likewise, database users who already have knowledge of the application
domain will not be able to perform data manipulation until they have knowledge of the model
constructs of the database languages.

New applications are being developed everyday that demand data models that support complex
relationships, rich constraints, and large-scale data handling. New fields such as bioinformatics and
computer-aided design are evolving with great intensity. The amount of data stored in a database
system is increasing astronomically as new applications of database emerge. We believe that the
traditional database models -- e.g., relational model -- are not adequate to meet the new demands of
database management.

www.manaraa.com

 4

3. The Semantic Data Model and SIM
The Semantic Database Model (SDM) was developed jointly by Michael Hammer from
Massachusetts Institute of Technology and Dennis McLeod at the University of Southern California.
The SDM is a high-level semantics-based database description and structural formalism for databases
[1]. It was developed to address the problems encountered in the relational model as described in the
previous section. Although capturing all the semantics of a database in its schema has been
unattainable so far, SDM successfully incorporates most of the semantics. Some data models like the
hierarchical, relational, and network models, use abstraction that still require the database developers
and users to think in terms of the structure of the computer rather than structure of the problems on
hand. These data models expose the low-level limitations of the computer. SDM, however, focuses
on real-world perception of the problems and the relationship between them. It does not expose the
low-level limitations that are inherent to computers.

SDM also facilitates performing queries on a database from different perspectives, which can prove
beneficial to users who have different perspectives of a large database with complex relations.
Although giving different perspectives to the database users would lead to some redundancy of data
storage and manipulation, it will have enormous benefits for better understanding of the database
relationship. Moreover, it can dramatically improve the efficiency of queries made, as we will see in
later sections. The Relational data model fails to give this advantage to its users, as they often have to
perform complex operations like multi-table join.

The data model used by SIM is closely related to SDM. As per [1, 3, 4], the fundamental features of
semantic models include entities, relationships between entities, integrity constraints and abstraction.
SIM not only incorporates all these fundamental features of a semantic model but also adds some of
its own features to make it more robust and user-friendly. SIM uses classes to represent a collection
of entities of the same type. Entities are objects defined in the database that have common
characteristics and represent a conceptual component of the problem at hand. SIM presents two types
of classes: base class and subclass. The base class is the most generalized form of a class, while a
subclass represents further specialization of one of more superclasses. SIM also facilitates multiple
inheritance; that is, a subclass can have multiple superclasses. It follows a hierarchical convention;
the hierarchy has only one root that is the base class and the rest of the nodes are subclasses. A
subclass can have multiple subclasses above it in the hierarchy as superclasses. With the use of
inheritance among classes, SIM introduces a level of abstraction.

The building blocks of classes are attributes. There are two basic types of attribute in SIM: data-
valued attribute (DVA) and entity-valued attribute (EVA). Data-valued attributes are properties that
each entity of the class possesses. There can be three types of DVAs: primitive types that are built-in
data types, compound types that are composed of multiple primitive types, and symbolic types that are
analogous to enumerated types in programming languages. EVAs are used to define relationships
between entities. There are two classes of interest for each EVA. One is the class that defines the
EVA, also referred as the perspective class; the other is the class that the EVA points to, referred to
as the target class. In some cases, the perspective class and the target class can be the same class
resulting in an entity pointing to another entity of the same class type. EVAs are also bidirectional;
thus, for every EVA, there is an inverse EVA. This formation provides the advantage of performing
queries on a database from the perspective of either of the two classes involved. Both the DVAs and
EVAs can be associated with special constraints to capture much of the semantics of an application.
These special constraints come in the form of attribute options.

www.manaraa.com

 5

The final constituent used to capture the semantics of the application is the verify declaration. The
verify declaration should be used to handle special cases of integrity constraints. Thus, SIM uses class
hierarchy, EVA and DVA constraints, and verify declarations to capture the semantics of the
application to the greatest extent possible.

4. Object Definition Language for SIM
This section describes the fundamental Object Definition Language (ODL) features we have
implemented for the current PC version (V 1.2.x) of SIM. The ODL for any DBMS specifies the
syntax for defining elements in its schema. The current version of SIM ODL covers the essence of
SDM. Now we describe each of the ODL elements that have been implemented in SIM. We have
used railroad diagrams for precise syntax reference as it is supported by SIM V 1.2.

4.1 Classes
A class is a structural definition of entities with common characteristics. It is used to store a
collection of entities of the same basic type. Entities by themselves are not defined in the schema of a
database. In SIM, there are two types of classes, base classes and subclasses. A base class is a type of
class that is not defined in terms of other classes, while a subclass is defined in terms of other classes,
also referred to as its superclasses. We define a class by associating it with attributes that describe the
class. The attributes can be data-valued attributes (DVAs) or entity-valued attributes (EVAs) which
we will describe in the next sub-section.

SIM gives us the ability to arrange classes in hierarchies. A hierarchy can be presented by defining a
collection of classes that has subclass and superclass relationships among its classes. SIM allows a
subclass to have multiple immediate superclasses. All class hierarchies must contain exactly one base
class. Thus, all superclass paths in a hierarchy must end at the same base class. Also, SIM does not
allow hierarchies to be cyclic, as a subclass cannot have itself as its own superclass.

The following railroad diagram illustrates the syntax for defining a base class:

Syntax element <base class name> represents the unique name of the base class and <comment> is
an optional brief description of the class. <data-valued attribute> and <entity-valued attribute>
represent DVA and EVA attributes respectively; the syntax is presented in section 4.2. We can define
multiple attributes, either DVA or EVA, in a class definition by separating them with semicolons.

CLASS <base class name>
<comment>“ ”

<data-valued attribute> ()

<entity-valued attribute>

;

www.manaraa.com

 6

Now we present the syntax for defining a subclass.

The key difference between defining a base class and subclass is the representation of superclasses.
The “OF/AND <base class name>” and “OF/AND <subclass name>” syntax elements are used to
represent the superclasses of the subclass being defined. It should be noted that “/1\” means that at
most one base class can be used in defining the superclasses of a subclass. Also, the order of
superclass definition is not relevant.

In SIM, each base class entity is associated with a unique surrogate value that is assigned by the
system. Surrogate values that are totally maintained by SIM and are transparent to its users are used
to connect pieces of an entity to form a single entity. EVA relationships between entities also use
surrogate values for association. Surrogate values are also used to distinguish between entities, even
those with the same attribute values.

4.2 Attributes
Class structures are comprised of attributes. Attributes are properties that all the entities in a class
possess. SIM provides two basic attribute types: data-valued attributes (DVA) and entity-valued
attributes (EVA). A DVA is used to store the data of one or more entities that participate in the class
in which the DVA is defined. In the current PC version of SIM, a DVA uses only primitive data types
as discussed in the next subsection. An EVA is used to correlate entities of one class (perspective
class) to that of another class (target class). In a special case, both the perspective class and the target
class can be of the same type, which leads to an entity referencing another entity of its own type. The
relationship between entities of a target class and perspective class can be one-to-one, one-to-many,
many-to-one or many-to-many. Every EVA also has a corresponding inverse EVA. SIM guarantees
that an EVA and its inverse EVA automatically stay synchronized, thus eliminating the potential for
dangling inverse references.

The following railroad diagram can be used as a reference for the syntax for defining a data-valued
attribute inside a base class or subclass.

The REQUIRED keyword is used to ensure that the DVA value is never NULL. The syntax for
expanding <data type> is shown in the diagram in the next subsection. The <comment> and

SUBCLASS <subclass name>
<comment>“ ”

OF

AND

<subclass name>

<data-valued attribute> ()

<entity-valued attribute>

;

<base class name> /1\

<data-valued attribute>:

<comment> “ ”

<DVA name> : <data type>

REQUIRED

www.manaraa.com

 7

REQUIRED constructs are optional. Next, we give the railroad diagram for an entity-valued
attribute.

The <base class name> or <subclass name> element will be used to refer to the target class. The
perspective class will be the one in which the EVA is defined. Next, we indicate the EVA
relationship type. The SINGLEVALUED (SV) option is used if the EVA can point to only one entity
in the target class. The MULTIVALUED (MV) option is used if the EVA can point to multiple
entities in the target class. SV is used by default if neither of the relationship types is mentioned.
Again, we can use the REQUIRED keyword to guarantee that the EVA always references some
entity in the target class. Finally, we have to specify the name of the corresponding inverse EVA for
the EVA being defined.

From the perspective of a class, an attribute can be referred to as immediate, inherited or extended.
The immediate attributes are the ones that are defined within the declaration of the perspective class.
Inherited attributes are all the attributes that are defined in the superclasses of the perspective class,
while the extended attributes of a perspective class are the attributes that have to be referenced by
navigating through an EVA reference.

4.3 Data Types
The current version of SIM supports three primitive data types: INTEGER, BOOLEAN and
STRING. The INTEGER data type represents positive and negative integer values. The BOOLEAN
data type is used to store logical true and false values. The STRING data type is used to store a
sequence of characters of a specified size. A DVA must use one of these three types. The following is
the syntax for data types:

The SIM constructs that are not yet part of the current PC version of SIM are Class Attribute,
Constructor Type, User Defined Type, Index, Subrole, Verify and the following primitive data types:
REAL, CHAR, KANJI, TIME, DATE, and NUMBER. A complete and detailed description of the
SIM ODL is outside the scope of this paper and can be found in [5].

<data type> :
INTEGER

BOOLEAN

STRING [] <size>

<entity-valued attribute>:

<comment> “ ” <subclass name>

INVERSE IS <EVA name>

,

SV

SINGLEVALUED

REQUIRED

MV

MULTIVALUED

/1\

/1\

/1\

,

<base class name><EVA name> :

www.manaraa.com

 8

5. Object Manipulation Language for SIM
We now describe the Object Manipulation Language (OML) that is supported by the current version
(v1.2.x) of SIM. The OML for a database management system specifies the syntax and
interpretations for performing queries and modifications to a database. While the ODL for SIM is
based on SDM, SIM has developed its own OML. Again we present railroad diagrams for precise
syntax reference. The syntax represented by the railroad diagrams reflects the current version of SIM.

5.1 Insert
We begin our discussion of OML constructs with the INSERT statement, which is the most basic
type of construct in OML. An INSERT statement is used to insert a new entity into a class. The
INSERT operation can be performed on either a base class or a subclass. If it is performed on a
subclass, then appropriate entities are automatically added to its superclasses. In an INSERT
statement, all the required attributes have to be assigned some non-NULL value, or else the operation
will fail. The non-required attributes that are not assigned any values will automatically be assigned
NULL values.

The following diagram provides the syntax for an INSERT statement:

Inside the parenthesis we assign values to the immediate and inherited attributes of the class. The
DVA attributes are assigned values depending on the DVA data type. To assign values to an EVA,
the INCLUDE keyword has to be used if the EVA is multi-valued. <target-class> is used for
specifying the target class name and <exp> refers to a Boolean expression that qualifies entities to
which the EVA should point.

5.2 Insert from super class
This section describes a second version of the INSERT statement which allows an entity to be added
to a class from its superclass. The class in which the entity is inserted can be many levels below the
superclass it is inserted from. If no entity exists between the inserted class and the super class, SIM
creates intermediate entities. These new intermediate entities can also be assigned values in the
assignment list of the INSERT statement.

The following is the railroad diagram for the second type of INSERT statement for adding an entity
from another class:

 <superclass> FROM <subclass>
,

 <eva-attribute> :=
INCLUDE

WITH ()

 <dva-attribute> <value>:=<expression> WHERE) (

<target-class> <exp>

INSERT

INSERT <class>
,

 <dva-attribute> <value>:=)

 <eva-attribute> :=
INCLUDE

<target-class>

(

WITH () <exp>

www.manaraa.com

 9

In the above diagram <expression> is a Boolean expression that qualifies a single entity from the
<superclass>. An entity has to uniquely satisfy the conditional expression; otherwise, the insertion
operation is not performed. The satisfying entity is extended to the <subclass> that is in the same
hierarchy. The assignment statements are similar to the INSERT version described in section 5.1.

5.3 Delete
The DELETE statement is used to remove entities from a class. The deletion statement removes
selected entities from the indicated class and all its subclasses. It does not remove the selected entities
from any of the superclasses of the indicated class.

Below is the diagram for syntax reference of the DELETE statement:

The LIMIT clause is used to create an upper bound on the number of entities to be deleted. If the
number of entities selected to be deleted is more than the number specified by the LIMIT clause, then
no change are made to the database. The keyword ALL can be used to delete all the entities that
satisfy the delete condition without setting any upper bound. If the LIMIT clause is not defined, the
upper bound is set to one by default. <expression> must evaluate to a Boolean value.

5.4 Modify
The MODIFY statement is used to change the value(s) of the existing attributes of an entity. From a
class’s perspective, only its immediate and inherited attributes can be modified. Extended attributes
cannot be altered. If we use attributes as a part of the assignment expression, the attribute values will
resolve to what they were before the start of the modify query. Thus, the MODIFY statement cannot
refer to the result of its own modification.

The following diagram shows the basic structure of a MODIFY query:

Here again we use the LIMIT clause to limit the number of entities being modified. If the LIMIT
clause is omitted, only one entity can be modified. The EXCLUDE and INCLUDE keywords are
used for operations on multi-valued attributes. The type of <expression1> depends on the data type of

MODIFY

LIMIT = <integer>

ALL

(<attribute> :=)
EXCLUDE
INCLUDE

WHERE TRUE
<expression2>

,
<expression1>

<class>

<class>

LIMIT = <integer>

DELETE

<expression>

ALL

WHERE TRUE

www.manaraa.com

 10

the attribute. For example, if the attribute being assigned values is a DVA of type INTEGER, then
<expression1> should resolve to an integer value. The <expression2> clause, which is used to select
the entities that are to be modified, should always be a Boolean expression.

5.5 Retrieve
The RETRIEVE statement is used for data retrieval from a database. The RETRIEVE statement
starts with a FROM clause where we define all the perspective classes. If more than one perspective
class is used, a join operation is performed between the entities of the different perspective classes.
After perspective class names, we have to mention the attributes we want to display. The immediate,
inherited, and extended DVAs of the perspective classes can be displayed. EVA values cannot be
displayed directly but are used to refer to extended DVA attributes. Extended DVA attributes with
multiple levels of indirection can also be retrieved. The RETRIEVE query is most efficient when
only a single perspective class is used. Use of multiple perspectives classes is less efficient. So, if
multiple perspective classes are needed for the majority of queries, then the database schema should
be modified by adding new EVA relations, so that a single perspective class can be used.

The following is the railroad diagram for the RETRIEVE statement:

The <expression2> clause evaluates to a Boolean expression. <attribute definition>s are used to list
the DVAs that we want to display in order.

In the next diagram we show how a DVA can be qualified using the class name and EVAs.

If two different classes have an attribute with the same name, we can qualify the attribute we want to
use by using the “OF <class>” clause. The target class can be reached by navigating through multiple
EVAs. Finally, the <DVA> clause can be used to specify the DVA to be displayed. An asterisk ‘*’
can be used to display all the immediate DVAs of the referenced class.

5.6 Expression
Expressions are part of all the OML statements. Expressions in SIM can return values of type
Boolean, Integer or String. Expressions are comprised of conditional, relational, and arithmetic
operators and the corresponding operands. The conditional expression constructs are OR, AND, and
NOT; relational expression constructs <, <=, >, >=, = and <> are supported; arithmetic operations can

<DVA>

*
OF <EVA>

, OF <class>

<attribute definition> :

RETRIEVE

FROM <perspective class>

<attribute definition>

,

WHERE
<expression2>

TRUE

,

www.manaraa.com

 11

be performed on +, -, * and DIV operators. The operands in the expression can be of type String
literal, Null literal, Integer literal, Boolean literal or Identifier trail. Nested expressions are also
supported.

A String literal is a sequence of characters inside double quotes. The keyword NULL is used to refer
to null literal. Integer literals can either have a positive or negative integer value. Boolean literals
have the value of either true or false. Finally, Identifier trail is used to refer to immediate, inherited,
and extended attributes of a class. The notation for qualifying an attribute is the same as the one
specified for the <attribute definition> clause in the previous sub-section.

The current version of SIM does not support functions of the following types: arithmetic functions
such as ROUND and ABS; aggregate functions like AVG, MAX, and SUM; and String functions like
EXTRACT and LENGTH. It also does not implement ISA role testing; All, Some and None
qualifiers; Inverse Is and Transitive functions.

As has been described above, most of the fundamental features of SIM OML are supported in the
current version. Although not complete, this version is comprehensive enough to support an array of
complex database applications. A more comprehensive and in-depth description of the SIM OML can
be found in [6].

www.manaraa.com

 12

6. The University Database
In this section we use a simple University database to illustrate the features and uses of SIM. The
schema code is provided in Appendix A, towards the end of the paper.

Figure 1: University database diagram

Person

Faculty Student

Department

Grad_Student

Section

Instructor Researcher

College

Course

Alumni

dept-students

majoring-in

college-in

college-departments

spouse

classes-
registered

students-
enrolled

classes-
teaching

instructor

courses-offered
dept-at

course-of

sections-of

faculty-dept

dept-
faculties

A B A is a subclass of B

LEGEND

X X is a single valued EVA

X
X is a multi valued EVA

A A is a class name

advisor

students-
advising

www.manaraa.com

 13

The University database diagram gives us an overview of the structure of its schema. This simple
schema captures the essence of SIM. It will be used to illustrate the concepts of single inheritance
and multiple inheritance. We will also encounter one-to-one, one-to-many, and many-to-many EVA
relationships. The base classes in the schema are Person, Department, College, Section and Course.
The subclasses are Faculty, Student, Grad_Student, Instructor_Researcher and Alumni. It should be
noted that Instructor_Researcher uses multiple inheritance, as it inherits from both Faculty and
Grad_Student.

In our University database we have a number of EVA relationships. For example, classes-registered
is an EVA of class Student and it points to the Section class. As all EVA relationships are
bidirectional, we have a corresponding inverse EVA students-enrolled in Section that points to the
Student class. The thicker solid line arrow represents that this is a many-to-many relationship. Thus,
as expected, a Student can point to multiple Section entities and a Section entity will be able to point
to multiple Student entities. As we have mentioned before, we can take advantage of multiple
perspectives to retrieve required information. We will be able to select a section and directly retrieve
all the students registered for that class with a simple retrieve operation. Similarly, from a student
perspective, retrieving the classes he or she is registered for will be relatively simple and efficient. It
should be observed that EVA spouse is a special case as both the perspective class and target class is
Student.

We have not represented any DVAs in our database diagram for abstraction reasons and to not clutter
the diagram. The DVAs can be looked up from the schema code in Appendix A. In the Person class
declaration, person-ss, first-name, last-name and us-citizen are DVAs of type INTEGER, STRING,
STRING, and BOOLEAN, respectively. None of the DVA values can be NULL as they are all
required fields.

We will now illustrate some sample OML statements and briefly describe them.

• Insert Ewald Quak as a faculty.
 INSERT Faculty (person-ss := 653725952,
 first-name := "Ewald",
 last-name := "Quak",
 us-citizen := true,
 faculty-id := 2,
 faculty-dept := Department WITH (dept-abbreviation = "ACC"),
 classes-teaching := INCLUDE LIMIT = ALL Section WITH (unique-no = 48855
 OR unique-no = 48255
 OR unique-no = 48215))

In the above INSERT statement, a new Faculty entity is created. Since Faculty is a subclass of
Person, an entity in the Person class is automatically created. person-ss, first-name, last-name
and us-citizen are inherited DVA attributes from the Person class. faculty-id is an immediate
DVA attribute of the Faculty class, while faculty-dept and classes-teaching are immediate EVA
attributes of the Faculty class. faculty-dept is a single valued EVA and has been assigned a
reference to the “ACC” department, whereas classes-teaching is a multi-valued attribute that
refers to three entities in the Section class.

www.manaraa.com

 14

• Laurence Lebihan is made an instructor-researcher from a student.
 INSERT Instructor_Researcher FROM Student
 WHERE first-name = "Laurence" AND last-name = "Lebihan"
 (faculty-id := 106,
 advisor := Faculty WITH (faculty-id = 7),
 faculty-dept := Department WITH (dept-abbreviation = "CS"))

In this statement, an entity is inserted into Instructor_Researcher from the Student class.
Assuming the “Laurence Lebihan” entity was a member of the Student class, entities will be
created automatically for the Instructor_Researcher superclasses, Faculty and Grad_Student. It
is to be noted that the where clause should not hold more than one Student entity. Thus, there
should be only one student named Laurence Lebihan for this INSERT statement to execute.

• Professor Mata Rebecca in the math department will not be teaching any courses in fall 2003.
DELETE LIMIT = 3 Section WHERE (year = 2003
 AND semester = "fall"
 AND dept-abbreviation OF dept-at OF course-of = "M"
 AND first-name OF instructor = "Rebecca"
 AND last-name OF instructor = "Mata")

This DELETE statement is used to delete sections to be taught by the professor named Rebecca
Mata during fall 2003. dept-abbreviation OF dept-at OF course-of is of special interest as it
navigates thorough two EVAs to check if the course is offered in the math department. The
LIMIT clause ensures that if more than three sections satisfy the condition, the delete operation
is terminated.

• Students with student-id 922014 and 134880 have changed their major to CS and dropped all

their registered classes for fall 2003.
MODIFY LIMIT = 2 Student (majoring-in := Department WITH (dept-abbreviation = "CS"),
 classes-registered := EXCLUDE LIMIT = ALL Section WITH (year = 2003
 AND semester = "fall"))
 WHERE student-id = 922014 OR student-id =134880

• Print the unique course number, course name and department name of all the classes offered

by the business department during the fall 2003 semester.
FROM Section RETRIEVE unique-no,
 course-name OF course-of,
 dept-name OF dept-at OF course-of
 WHERE year = 2003
 AND semester = "fall"
 AND college-name OF college-in OF dept-at OF course-of = "Business"

• Display details of people and their spouses.
FROM Person RETRIEVE *,
 * OF spouse
 WHERE person-ss OF spouse <> NULL

In this query, the “*” construct is used to display all the DVA attributes of a person and his or her
spouse. Both the perspective class and the target class of the spouse EVA is Person. The
relational operator <> is used against NULL to check if the person’s spouse is entered in the
database.

www.manaraa.com

 15

• Output faculty, college pairs where faculty does not belong to the college
FROM Faculty, College RETRIEVE first-name,
 last-name,
 college-name
 WHERE college-name OF college-in OF faculty-dept <> college-name

In the above FROM statement, a join operation is performed between entities of the Faculty and
College classes. Although join operations are not usually needed in SIM, they are necessary
when two or more otherwise unrelated entities are involved in the query.

7. Comparing SIM with SQL
In this section, we discuss how SIM has addressed some of the weaknesses of relational data model
languages like SQL with the help of comparative examples. Queries are performed in SIM using the
logical path of the problems at hand, thus facilitating the ease of query use. The majority of the SIM
queries do not require join operation, which makes it more efficient than SQL. The time required for
join operation increases exponentially as the number of tables involved increases.

• Print the name of all the departments and their respective students in the Engineering College.

 In SIM,

FROM Department
RETRIEVE dept-name, first-name OF dept-students, last-name OF dept-students
WHERE college-name OF college-in = "Engineering"

 In SQL,
 SELECT dept-name, first-name, last-name
 FROM Department, College, Student
 WHERE College.CollegeNo = Department.CollegeNo
 AND Department.DepartmentNo = Student.DepartmentNo
 AND College.Name EQ ‘Engineering’

• If a professor in the Natural Sciences College is an advisor to at least one grad student who is
a US citizen, print the professor’s name and classes he or she teaches.

 In SIM,

FROM Faculty
RETRIEVE first-name, last-name, course-name OF course-of OF classes-teaching
 WHERE college-name OF college-in OF faculty-dept = "Natural Sciences"
 AND us-citizen OF SOME(students-advising) = true

In SQL,
 SELECT first-name, last-name, course-name
 FROM College, Department, Faculty, Section, Course
 WHERE College.CollegeNo = Department.CollegeNo
 AND Department.DepartmentNo. = Faculty.DepartmentNo
 AND Course.SectionNo = Section.SectionNo
 AND Faculty.FacultyID = Section.FacultyID
 AND college-name = ‘Natural Sciences’
 AND faculty-id IN (SELECT faculty-id
 FROM Faculty, Grad_Student
 WHERE Faculty.FacultyID = Grad_Student.AdvisorFacultyID
 AND Grad_Student.us-citizen = true)

www.manaraa.com

 16

The above examples illustrate how the SIM queries are more streamlined than SQL queries. The
multi-table join operation performed between the tables in SQL is not intuitive and is not directly
related to the problem we are trying to solve. SIM does not have to perform the join operation, as it
can just navigate through EVA references.

8. Implementation Considerations and Software Tools Used
We now describe the primary implementation considerations for SIM and elaborate on the various
software tools used for the implementation. Our implementation for SIM is Java-based, making it a
platform independent implementation. Java’s object-oriented model and relatively fast development
environment also made it the preferred language for implementation. One of the drawbacks of the
Java language is that it runs slower compared to languages like C++. As the goal of this research
project was not to implement SIM for PC at a commercial level, efficiency was not a major issue.
The current version of SIM does not implement all the features of the SIM database management
system due to limitations such as the amount of development that could be undertaken by a team of
one in a semester. As we covered in sections 5 and 6, we have implemented the fundamental features
of SIM that builds on the semantic data model.

The lexical analysis of our implementation of SIM is carried out by a tool called Java Compiler
Compiler (JavaCC). JavaCC is a parser generator for Java applications. JavaCC takes the source
program and generates JavaCC-defined tokens using the programmer-provided grammar. These
tokens are used as input to a syntax analyzer tool called JJTree. JJTree constructs a tree from the
tokens using the provided language grammar. The next stage is interpretation of the tree and
performing actions or printing error messages based on its contents.

We have used a Berkeley Database (Berkeley DB) to store the database information on the disk using
the B+tree feature. Berkeley DB is an embedded database system that can be used for concurrent
storage and retrieval of data in key/value pairs. Although Berkeley DB is written in C for efficiency
reasons, it provides a Java API. Berkeley DB effectively satisfies ACIDity which is a core part of any
database system. That is, it satisfies the properties of atomicity, consistency, isolation, and durability
by providing a collection of services like crash recovery, checkpoints, two-phase locking, and
multiple concurrency.

9. Future Work on SIM
SIM’s streamlined approach to database development has the potential to serve as a major platform
for building large-scale database applications. We believe that using this current PC version of SIM,
we will be able to demonstrate lots of advantages and uses of SIM and its SDM model. If these
advantages are properly availed of in research works and academia, the current SIM version would
provide motivation for its expansion to include all of its intended features.

10. Conclusions
In this paper, we have presented an overview of SIM, how it relates to SDM, and how SIM
encompasses the fundamental features of SDM including entities, relationships between entities,
integrity constraints and abstraction. We have shown how SIM uses class hierarchy, EVA and DVA
constraints and verify declarations to capture the semantics of the application. We have gone over
how SIM facilitates retrieval operations on a database from different perspective classes. Railroad
diagrams have been provided for easy syntax reference for the current version of SIM. The use of
SIM has been illustrated using the UNIVERSITY database and we have also demonstrated the ease
of use of SIM over SQL.

www.manaraa.com

 17

We believe SIM can be very useful for bioinformatics as it encompasses an enormous amount of data
storage and manipulation requirements, complex relationships and constraints between entities. We
are looking into using SIM for bioinformatics and proving its advantages as the next step of our
research project. SIM will also be used in academia, as it will be incorporated by some of the
professors in their database classes including the ones at the University of Texas at Austin.

11. Acknowledgments
I would like to express my utmost gratitude to Philip Cannata for guiding me throughout my research
work. This project would not have been possible without his active involvement. I am also very
grateful to Greg Lavender for his comments on the write-up and Mohamed Gouda, the departmental
honors program supervisor for facilitating this research project. I thank Doug Tolbert who provided
me with documentation on SIM. I also thank Unisys Corporation for giving me permission to
implement SIM and to Sun Microsystems for allowing me to use its facilities.

12. References

[1] Michael Hammer, Dennis McLeod: Database Description with SDM: A Semantic Database
Model. TODS 6(3): 351-386(1981)

[2] D. Jagannathan, R. L. Guck, B. L. Fritchman, J. P. Thompson, D. M. Tolbert: SIM: A Database
System Based on the Semantic Data Model. SIGMOD Conference 1988: 46-55

[3] C.J. Data. An Introduction to Database Systems, Volume 2. Addison-Wesley 83.

[4] R. King, D. McLeod. Semantic Database Models. In S.B. Yao (Ed). Principles of Database
Design. Prentice Hall 84.

[5] MCP/AS InfoExec™ Semantic Information Manager (SIM) Object Definition Language (ODL)
Programming Guide (8600 0189–101)

[6] MCP/AS InfoExec™ Semantic Information Manager (SIM) Object Manipulation Language
(OML) Programming Guide (8600 0163–102)

http://www.cs.utexas.edu/users/lavender
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hammer:Michael.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McLeod:Dennis.html
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods6.html#HammerM81
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jagannathan:D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Guck:R=_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fritchman:B=_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Thompson:J=_P=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tolbert:D=_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod88.html#JagannathanGFTT88

www.manaraa.com

 18

Appendix A
Following is a SIM schema for a simple University database:

% University Schema
%%%%%%%%%%%%%%%%%%%%%%%%%% Person %%%%%%%%%%%%%%%%%%%%%%%%%%%%

CLASS Person
(
 person-ss "social security number " : INTEGER, REQUIRED, UNIQUE;
 first-name "first name" : STRING[20], REQUIRED;
 last-name "last name" : STRING[20], REQUIRED;
 us-citizen "U.S. citizenship status" : BOOLEAN, REQUIRED;

 spouse "Person's spouse if married" : Person, SV, INVERSE IS spouse;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Student %%%%%%%%%%%%%%%%%%%%%%%%%%%%

SUBCLASS Student OF Person
(
 student-id "student identification" : INTEGER, REQUIRED, UNIQUE;
 hours-completed "hours completed" : INTEGER;

 classes-registered "classes registered for" : Section, MV, INVERSE IS students-enrolled;
 majoring-in "student's major" : Department, SV, INVERSE IS dept-students;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Faculty %%%%%%%%%%%%%%%%%%%%%%%%%%%%

SUBCLASS Faculty OF Person
(
 faculty-id "unique employee identification" : INTEGER, REQUIRED, UNIQUE;
 salary "current yearly salary" : INTEGER;
 office-phone "office phone number" : INTEGER;

 faculty-dept "department under which faculty teaches" : Department, SV, INVERSE IS dept-faculty;
 classes-teaching "classes currently taught" : Section, MV, INVERSE IS instructor;
 students-advising "students advised by the faculty" : Grad_Student ,MV, INVERSE IS advisor;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Grad_Student %%%%%%%%%%%%%%%%%%%%%%%%%

SUBCLASS Grad_Student OF Student
(
 fellowship-amount "fellowship amount, if any" : INTEGER;

 advisor "faculty advisor" : Faculty, SV, INVERSE IS students-advising;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Alumni %%%%%%%%%%%%%%%%%%%%%%%%%%%%

SUBCLASS Alumni OF Person

%%%%%%%%%%%%%%%%%%%%%%%%% Instructor_Researcher %%%%%%%%%%%%%%%%%%%%%%

SUBCLASS Instructor_Researcher "Current employees of the company" OF Grad_Student AND Faculty

www.manaraa.com

 19

%%%%%%%%%%%%%%%%%%%%%%%%%% Section %%%%%%%%%%%%%%%%%%%%%%%%%%%%

CLASS Section
(
 unique-no "unique number" : INTEGER, REQUIRED, UNIQUE;
 year "year, format: 2003" : INTEGER, REQUIRED;
 semester "semester: spring, summer or fall" : STRING[10], REQUIRED;

 course-of "course of this section" : Course, SV, INVERSE IS sections-of;
 students-enrolled "students enrolled in this section" : Student, MV, INVERSE IS classes-registered;
 instructor "instructor of this section" : Faculty, SV, INVERSE IS classes-teaching;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Course %%%%%%%%%%%%%%%%%%%%%%%%%%%%

CLASS Course "Courses offered in the University"
(
 course-name "course name" : STRING [40], REQUIRED, UNIQUE;
 course-number "course number" : INTEGER, REQUIRED;
 course-suffix "course suffix" : STRING [1];

 sections-of "sections of this course" : Section, MV, INVERSE IS course-of;
 dept-at "course offered by department" : Department, SV, INVERSE IS courses-offered;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% College %%%%%%%%%%%%%%%%%%%%%%%%%%%%

CLASS College "Colleges in the University"
(
 college-name "college name" : STRING [20], REQUIRED, UNIQUE;

 college-departments "departments under this college" : Department, MV, INVERSE IS college-in;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% Department %%%%%%%%%%%%%%%%%%%%%%%%%%

CLASS Department "Departments in the University"
(
 dept-name "Department name" : STRING [20], REQUIRED, UNIQUE;
 dept-abbreviation "Department abbreviation" : STRING [3], REQUIRED, UNIQUE;
 dept-phone "Department phone" : STRING [10], REQUIRED;

 courses-offered "courses offered by this department" : Course, MV, INVERSE IS dept-at;
 dept-students "students enrolled under this department" : Student, MV, INVERSE IS majoring-in;
 dept-faculty "faculties under this department" : Faculty, MV, INVERSE IS faculty-dept;
 college-in "department under college" : College, SV, INVERSE IS college-departments;
);

%%%%%%%%%%%%%%%%%%%%%%%%%% schema ends %%%%%%%%%%%%%%%%%%%%%%%%%%

